Transportation of frozen and unfrozen materials

RIKEN BioResource Center
Bioresource Engineering Division
Keiji Mochida
RIKEN BRC (BioResource Center) as a mouse bank

Duties

Collection → Cryopreservation → Distribution

Developer

Live mice → Embryo → Sperm → Cauda epididymides

Mainly preserve as frozen stock

BRC

6,250 strains

Researcher
Archiving Mouse Resources at BRC

- 86% of strains have some genetically artificial modifications.
- 900 inbred strains containing 60 wild-derived strains

BRC has collected unique strains mainly developed in Japan
We distribute mice to **510 organizations** in **32 countries**

in Europe **17 countries**

International Distribution

- USA: 37.9%
- China: 12.6%
- Germany: 8.7%
- France: 6.9%
- UK: 4.4%
- Belgium: 3.5%
- Singapore: 3.5%
- Canada: 3.5%
- Italy: 3.5%
- Spain: 3.5%
- Australia: 3.5%

As of Sep 22, 2011

Cumulative data since 2001
List of formats for distribution

<table>
<thead>
<tr>
<th>Format</th>
<th>No. items distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Live mice</td>
<td>18,217</td>
</tr>
<tr>
<td>Frozen embryos</td>
<td>560</td>
</tr>
<tr>
<td>Recovered litters from frozen embryos</td>
<td>446</td>
</tr>
<tr>
<td>Frozen sperm</td>
<td>32</td>
</tr>
<tr>
<td>Recovered litters from frozen sperm</td>
<td>54</td>
</tr>
<tr>
<td>Recovered litters from FIMRe frozen embryos</td>
<td>6</td>
</tr>
<tr>
<td>Recovered litters from FIMRe frozen sperm</td>
<td>2</td>
</tr>
<tr>
<td>Recovered chimeras from FIMRe ES cells</td>
<td>3</td>
</tr>
<tr>
<td>Only MTA, indirect transfer</td>
<td>121</td>
</tr>
<tr>
<td>frozen or fixed tissues and organs</td>
<td>100</td>
</tr>
<tr>
<td>Genomic DNA</td>
<td>14</td>
</tr>
</tbody>
</table>

FOR 10 Years 19,555

(Cumulative no. since FY2001)

About 25% of orders were distributed from frozen materials.
Transportation methods until now

Live mice

- **Advantage**
 1. Possible to use immediately
 2. No need reproductive techniques

- **Disadvantages**
 1. Should keep temperature, fresh air...
 2. Possibilities to die, escape, and spread murine diseases.
 3. Cost of Transportation is expensive

Dry shipper

- **Advantage**
 1. Stably keep at under -150°C

- **Disadvantages**
 1. Large and heavy
 2. Expensive
 3. Reproductive techniques are needed
 4. Incurs full fare for round trip
Experiments categorized by temperature

Transportation with

Dry shipper

Embryo → Standard

Sperm → Standard

Experiment 1

Experiment 2

Experiment 3

Experiment 4
Summary of temperature and preservation condition

- 0°C Freezing point of pure water
- -79°C Dry ice temperature
- -110°C to -130°C Glass transition (phase change)
- -150°C Nitrogen gas phase
- -196°C Liquid phase

Danger for storage
Intra-cellular ice formation = Lethal

Safety storage
Transportation with dry-shippers
Preservation in LN₂ tanks
Strategy of novel development

1: Cryopreserve embryos without ice formation.
2: Using the high concentrated freezing solution.

HOV method
(High Osmolality Vitrification)

Even at -80°C

- No ice formation.
- High survivability.
- Procedures are simple and quick.
Results: After storage at –79°C for 2 days, embryos were survived. But the survival rates were not enough. → defective method!

Exp. 1 Transportation of embryos at -80°C

Embryos: 2-cell stage embryos of C57BL/6J strain
Storage: at -79°C with dry ice pellets for 2 Days
Based vitrification sol.: EFS40 (40%EG, ficoll and sucrose)
Container: 1.2ml cryotube

1. Effect of sucrose concentrations

EFS40 standard Vit. sol.
(Mochida et al. JoVE, 2011)

Conc. of sucrose (mol/l)

Embryos survived

<table>
<thead>
<tr>
<th>Conc. of sucrose</th>
<th>0.3</th>
<th>0.45</th>
<th>0.6</th>
<th>0.75</th>
<th>0.9</th>
<th>10.5</th>
<th>12.0</th>
<th>13.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>EFS40</td>
<td>32</td>
<td>68</td>
<td>83</td>
<td>78</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Effect of EG (ethylene glycol) concentrations

Results: Survivability increased over 95%, when embryos were vitrified in solution contains both of sucrose and EG in high concentrations.

Optimal solution was found!
3. Effect of duration at -80°C

Results: Even after storage for 60 and 160 days in deep freezer, over 50% of embryos were survived and developed into offspring.
Exp.1 Transportation of embryos at -80°C

4. International transportation to FIMRe institutes

- MRC Harwell (UK)
- Univ. California Davis (US)
- RIKEN BRC (Japan)

Transport embryos with dryice

LN₂

Dryice package

3 Days

2 Days
Exp.1 Transportation of embryos at -80°C

5. Results of international transportation to FIMRe institutes

<table>
<thead>
<tr>
<th>Transportation</th>
<th>Recovery method</th>
<th>Transported embryos</th>
<th>Recovery (%)</th>
<th>Normal (%)</th>
<th>Pregnancy (%)</th>
<th>Embryos</th>
<th>Implant. (%)</th>
<th>Offspring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>Rapid</td>
<td>60</td>
<td>59 (98)</td>
<td>59 (100)</td>
<td>5 / 5 (100)</td>
<td>59</td>
<td>54 (92)</td>
<td>46 (78)</td>
</tr>
<tr>
<td>From Japan to MRC Harwell (UK)</td>
<td>Rapid</td>
<td>75</td>
<td>67 (89)</td>
<td>61 (91)</td>
<td>2 / 2 (100)</td>
<td>43</td>
<td>Not determined</td>
<td>17 (40)</td>
</tr>
<tr>
<td>From Japan to Univ. California Davis (US)</td>
<td>Slow</td>
<td>100</td>
<td>100 (100)</td>
<td>99 (99)</td>
<td>5 / 5 (100)</td>
<td>97</td>
<td>70 (72)</td>
<td>47 (48)</td>
</tr>
</tbody>
</table>

Results:

In both institutes, over 90% of transported embryos were morphologically normal, then 40 and 48% of transferred embryos developed into offspring.

Transported embryos in dry-ice package were successfully recovered and developed into healthy mice.
Exp.1 Transportation of embryos at -80°C

6. Survivability of cryopreserved embryos by HOV method in major mouse strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Total No. (%) of embryos</th>
<th>No of recipients pregnant/used (%)</th>
<th>No. of embryos</th>
<th>Developed to offspring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vitrified</td>
<td>Retrieved (%)</td>
<td>Alive (%)</td>
<td>Transferred</td>
</tr>
<tr>
<td>C57BL/6J</td>
<td>265</td>
<td>263 (97)</td>
<td>256 (97)</td>
<td>3/3 (100)</td>
</tr>
<tr>
<td>C57BL/6N</td>
<td>175</td>
<td>173 (99)</td>
<td>168 (97)</td>
<td>3/3 (100)</td>
</tr>
<tr>
<td>BALB/cA</td>
<td>210</td>
<td>210 (100)</td>
<td>206 (98)</td>
<td>3/3 (100)</td>
</tr>
<tr>
<td>129/SvJ</td>
<td>100</td>
<td>100 (100)</td>
<td>93 (93)</td>
<td>3/3 (100)</td>
</tr>
<tr>
<td>DBA/2N</td>
<td>200</td>
<td>200 (100)</td>
<td>193 (97)</td>
<td>6/6 (100)</td>
</tr>
<tr>
<td>C3H/HeN</td>
<td>100</td>
<td>99 (99)</td>
<td>96 (97)</td>
<td>3/3 (100)</td>
</tr>
</tbody>
</table>

Results: High survival rates (93-100%) and good ability to develop into offspring (32-82%) in six major inbred mouse strains were confirmed.
Exp. 1 Transportation of embryos at -80°C

7. Procedures of HOV method (optimized for major mouse strains)

(1) Vitrification

Embryos were immersed in equilibrium solution for 3 min.

![Diagram of vitrification process]

- Equilibrium solution: 5% DMSO + 5% EG-PB1, 50 μl
- Vitrification solution: 42.5% EG + 17% Ficoll + 1 M Sucrose-PB1, 50 μl

(2) Liquefy (Slow thawing method)

- Retrieve a tube and let it stand for 3 min.
- Add 850 μl of 0.75 M sucrose-PB1
- Transfer embryos and wash in 50 μl of 0.25 M sucrose-PB1
- Culture in medium until embryo transfer

- Directly immerse in LN₂
- All procedures were performed at room temperature

Don’t need to hurry up! Stable & high results.
Summary of cryopreservation methods for mouse embryo

1. Slow freezing
 - Cooling slowly
 - \(-40^\circ C\)
 - \(-80^\circ C\)

2. Vitrification
 - 3hrs slow freezing
 - Immerse directly into LN\(_2\)

3. Equilibrium slow freezing

4. HOV method
 - More concentrated solution
 - Survive!

Dry ice
- \(-79^\circ C\)
- Lethal

LN\(_2\)
- \(-196^\circ C\)
- Survive!
Exp.2 **Transportation of embryos at 4-8°C**

1. Protocol of transportation developed by Prof. Nakagata in Kumamoto Univ (CARD).

 - **Recovery**: 37°C, 5% CO₂ for 4 hours
 - **Transfer**: into M2 medium
 - **Packing**: with cold pack
 - **Transportation**: 4 °C, 2 days
 - **Transfer into recipient**

2. **Results of domestic transportation**

<table>
<thead>
<tr>
<th>Transportation</th>
<th>Total No. of embryos</th>
<th>No. of tubes</th>
<th>No. of embryos recovered (%)</th>
<th>No. of embryos normal (%)</th>
<th>In vivo development</th>
</tr>
</thead>
<tbody>
<tr>
<td>From CARD to BRC</td>
<td>120</td>
<td>3</td>
<td>120 (100)</td>
<td>120 (100)</td>
<td>pregnant (3/4, 75%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Implantation sites (25/40, 63%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>offspring (16/40, 40%)</td>
</tr>
<tr>
<td>From BRC to NIRS*</td>
<td>96</td>
<td>4</td>
<td>95 (99)</td>
<td>94 (99)</td>
<td>pregnant (5/5, 100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Implantation sites (55/65, 92%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>offspring (30/60, 50%)</td>
</tr>
</tbody>
</table>

*: National Institute of Radiological Science

Results: After transportation for 2 days at refrigeration temperature, most of embryos were morphologically normal. And 40-50% of embryos developed into offspring by embryo transfer. → This method is practically useful.
Exp.3 Transportation of spermatozoa at -80 ℃

1. Summary of transportation with frozen sperm at -80 ℃

(1) Freezing of sperm in 18% raffinose and 3% skim milk solution with plastic straws
 (Takeshima, Nakagata, Ogawa, Exp. Anim. 1991)

(2) Transportation of frozen sperm with dry-ice

(3) Production of live mouse by IVF and embryo transfer

- Add thawed sperm after warming at 37°C for 15 min
- Culture in CZB medium
- BSA-HTF
- Insemination
- 2-cell embryo
- Transfer into recipient
- Offspring
Exp.3
Transportation of spermatozoa at -80 °C

2. Results of IVF with transported frozen C57BL/6J sperm and development in vivo.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>No. of oocytes</th>
<th>Inseminated</th>
<th>Fertilized (%)</th>
<th>Pregnant (%)</th>
<th>Implantation sites (%)</th>
<th>Offspring (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>137</td>
<td>63 (46.0)</td>
<td>3/3</td>
<td>33/36 (92)</td>
<td>24/36 (67)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>106</td>
<td>60 (56.6)</td>
<td>3/3</td>
<td>34/36 (94)</td>
<td>30/36 (83)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>177</td>
<td>65 (36.7)</td>
<td>3/3</td>
<td>28/36 (78)</td>
<td>24/36 (67)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>183</td>
<td>84 (45.9)</td>
<td>3/3</td>
<td>32/36 (89)</td>
<td>26/36 (72)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>603</td>
<td>46.3 ± 4.1%</td>
<td>12/12 (100)</td>
<td>86.0 ± 4.5%</td>
<td>72.0 ± 3.7%</td>
<td></td>
</tr>
</tbody>
</table>

Results: After transportation with dry-ice for 2 days, we successfully obtained offspring from frozen sperm by in vitro fertilization.
This transportation procedure is a practical method.

These results were reported at meeting in 2008.
Exp. 3 Transportation of spermatozoa at -80°C

3. Established procedure of IVF with frozen sperm

- Add thawed sperm
- PVA-HTF containing 0.4 mM methyl-
- BSA-HTF supplemented 1 mM GSH*, **
 (reduced glutathione)
- Culture in CZB medium
- 2-cell embryo
- Transfer into recipient
- Offspring

4. Results of IVF with fresh or frozen sperm in standard strains

<table>
<thead>
<tr>
<th>Strain</th>
<th>Fresh Sperm</th>
<th>Frozen Sperm</th>
<th>Frozen Sperm + GSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>C3H/HeJ</td>
<td>74 ± 1</td>
<td>81 ± 1</td>
<td>94 ± 1</td>
</tr>
<tr>
<td>C57BL/6J</td>
<td>81 ± 1</td>
<td>46 ± 1</td>
<td>75 ± 1</td>
</tr>
<tr>
<td>C57BL/6N</td>
<td>75 ± 1</td>
<td>70 ± 1</td>
<td>79 ± 1</td>
</tr>
<tr>
<td>BALB/cA</td>
<td>93 ± 1</td>
<td>84 ± 1</td>
<td>96 ± 1</td>
</tr>
<tr>
<td>DBA/2N</td>
<td>93 ± 1</td>
<td>87 ± 1</td>
<td>96 ± 1</td>
</tr>
<tr>
<td>129/SvJ</td>
<td>58 ± 1</td>
<td>49 ± 1</td>
<td>58 ± 1</td>
</tr>
</tbody>
</table>

(N = 5-9)

*: P > 0.05

Results: There was no differences between fresh and frozen (added GSH) group except C3H/HeJ strain.
Exp.4 **Transportation of spermatozoa at 4-8°C**

1. Transportation of sperm within epididymides at refrigerated temperature

 - Cauda epididymides
 - 0.5ml Silicone oil
 - Plastic bag
 - 0.8L Thermos

2. Results of IVF after storage of sperm until 5 days

 (Mochida, et al. Theriogenology, 2005)

 ![Graph showing 2-cell embryos](chart.png)

 Results: Embryos were obtained by IVF with refrigerated epididymides for 5 days, but the rates of fertilization decreased gradually.
Exp.4 Transportation of spermatozoa at 4-8℃

3. Results of IVF after refrigeration of C57BL/6J sperm for 2 days

4. Practical results of IVF after transportation of sperm (C57BL/6J background strains)

<table>
<thead>
<tr>
<th>Strain No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inseminated</td>
<td>70</td>
<td>22</td>
<td>46</td>
<td>10</td>
<td>31</td>
<td>36</td>
<td>70.8 ± 10.0%</td>
</tr>
<tr>
<td>Fertilized</td>
<td>72</td>
<td>24</td>
<td>59</td>
<td>34</td>
<td>50</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>(%)</td>
<td>97.2</td>
<td>91.7</td>
<td>78.0</td>
<td>29.4</td>
<td>62.0</td>
<td>66.7</td>
<td></td>
</tr>
</tbody>
</table>

1mM GSH were added in insemination medium

Results: After transportation of sperm with refrigerated epididymides for 2 days, we successfully obtained embryos even in B6J strain. This transportation procedure has practically used in our center.
1. **Frozen materials**: applicable within 5 days
 - Dry-ice packages for both of embryo and sperm are safe, easy to carry and economical method.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Cost of transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Live mice (2-3 pairs)</td>
</tr>
<tr>
<td>Domestic (600km)</td>
<td>$200~900</td>
</tr>
<tr>
<td>Intercontinental *</td>
<td>$2,000</td>
</tr>
</tbody>
</table>

*: from Japan to U.S. or Europe

2. **Unfrozen materials**: applicable within 2 days
 - We have often used for only domestic transportation.
 - The refrigeration package is remarkably economical method.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Cost of transportation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Live mice (2-3 pairs)</td>
</tr>
<tr>
<td>Domestic (600km)</td>
<td>$200~900</td>
</tr>
</tbody>
</table>
Conclusion

Efficient transportation methods of embryos and spermatozoa at dry-ice temperature or under refrigeration were devised.

HOV method is eminently applicable for routine embryo cryopreservation in many mouse facilities.

Acknowledgements

We thank
Dr. Martin Fray (MRC Harwell)
Drs. K.C. Kent Lloid, M.W. Li, J. M. Vallezulunga (U.C. Davis)
for performing the recovery test and invaluable discussions.
Our members of Reproductive technology group in BRC & Ogura's Lab. at the party of 10th anniv.

Please visit our HP

Thank you for your attention !!