Contribution of Disease Modelling to Precision Medicine Initiatives

INFRAFRONTIER / IMPC Stakeholder Meeting
November 14-16, 2017 🗺️ 📍 Athens, Royal Olympic Hotel
Animal models in an age of personalized medicine

Personalized medicine is based on intraspecies differences. It is axiomatic that small differences in genetic make-up can result in dramatic differences in response to drugs or disease. To express this in more general terms: in any given complex system, small changes in initial conditions can result in dramatically different outcomes. Despite human variability and intraspecies variation in other species, nonhuman species are still the primary model for ascertaining data for humans. We call this practice into question and conclude that human-based research should be the primary means for obtaining data about human diseases and responses to drugs.

EXECUTIVE SUMMARY

Prediction
- In medical science, in order for a practice, test or modality to be considered predictive it must be found to have a very high probability of obtaining the correct answer. Occasional correlation is not synonymous with prediction.

Intraspecies differences
- Personalized medicine is based on differences in drug and disease responses between individual humans, despite the genetic similarity of these humans.

Complex systems
- Humans and animals are examples of complex systems, thus extrapolating results of drug testing and disease response among species is expected to be problematic.

Interspecies differences
- Empirically, we find that extrapolating results of drug testing and disease response among species is problematic, and in fact, does not reach the level of probability necessary to be considered predictive.

Evolution
- Differences among species in genes, gene regulation and expression, and the networks the genes and proteins operate in explain the empirically observed low probability that any two species will respond the same to drugs and disease.
Animal-based studies will be essential for precision medicine

AT AN INSPIRING WHITE HOUSE CEREMONY ON 25 FEBRUARY 2016, PRESIDENT OBAMA celebrated the 1-year anniversary of the launch of the Precision Medicine Initiative (PMI), which promises to usher in a transformation of medical practice. A collaborative effort between government, academia, and industry, directed and led by the National Institutes of Health (NIH), the PMI envisions involving an individual’s molecular profile and other phenotypic descriptors combined with environmental exposures and lifestyle behaviors to guide therapies more targeted and cost-effective than current “one-size-fits-all” strategies. The extent to which massive amounts of genomic and other data can expose statistically relevant and clinically actionable results will be tested in a planned >1 million-person cohort. Although we very much support this audacious plan, it is important to note that no matter how large a cohort, statistical power will never be sufficient to address by data analysis alone every observation that emerges or to drive to mechanism each human finding. In this context, the PMI will benefit greatly from integrative informatics and innovative animal-based research and validation studies that leverage existing networks of biological knowledge to create a new taxonomy of disease and to accelerate the successful incorporation of precision medicine into mainstream clinical practice.

Francis Collins, the NIH Director, and his team have made tremendous progress in planning and preparing for the implementation of PMI during the last year since the official announcement of the vision for the PMI Cohort Program (www.nih.gov/news/health/sep2015/od-17.htm). This vision was informed by numerous public workshops of the PMI Working Group (completed September 2015) to resolve the challenges to building and launching a cohort with $130 million in funding opportunities awarded this year (www.nih.gov/precision-medicine-initiative-cohort-program/program-components). As part of these discussions, numerous elements, including genomics, electronic health records, participant-provided data, sensors, and mobile health technologies, have been proposed as essential to generate the data required to drive precision medicine. However, the critical role of experimental studies in genetic model organisms, for which there are enormous extant data acts that continue to accrue, has not been fully considered, especially in four areas that are key to the successful deployment of the PMI.

Gene variant interpretation. We are able to provide a confident interpretation of the clinical relevance for only a vanishingly small proportion of variants in human populations. Preclinical and codinal studies using animal models strategically designed to reflect the genomic variation observed in cohort participants will be necessary to define downstream functional consequences and discriminate causal from correlative factors at relevant efficiency. New genome-editing technologies [for example, CRISPR (clustered regularly interspaced short palindromic repeats)] now enable the efficient derivation of precision disease models incorporating patient-specific genetic variants as a new means of recapitulating essential aspects of human disease in zebrafish, mouse, rats, pigs, and other organisms. Indeed, the study of patient-derived avatars to define disease pathogenicity will fine-tune the diagnostic precision inherent in the PMI and accelerate the discovery of new therapeutic targets. The NIH can capitalize on recent technological advances in animal modeling by completing current efforts to functionally annotate key model organism genomes, such as the Knockin Mouse Project, which is part of the International Mouse Phenotyping Consortium (www.mousephenotype.org), and by expanding the nascent Pilot Center program in Precision Disease Modeling (http://grants.nih.gov/grants/guide/pa-files/PAR-14-180.html). Ultimately, disease penetrance, pleiotropy, and even higher-order gene-gene interactions will be accessible in such systems. Further, a commitment to the comprehensive investigation of variants found in traditionally underserved populations would contribute to inclusivity by clarifying the roles of variants that are rare or absent in majority ethnics.

Incorporating ‘-omic’ data. Effectively linking the unprecedented amounts of genomic, metabolomic, and other -omic data with environmental, behavioral, and lifestyle information...
Data Interpretation Matters!

Genomic responses in mouse models poorly mimic human inflammatory diseases

Junhee Seok¹, H. Shaw Warren², Alex G. Cuenca³, Michael N. Mindrinos⁴, Henry V. Baker⁵, Weihong Xu⁶, Daniel R. Richards⁷, Grace P. McDonald-Smith⁷, Hong Gao⁸, Laura Hennessy⁹, Celeste C. Finnerty⁹, Cecilia M. López¹⁰, Shari Honari¹¹, Ernest E. Moore¹¹, Joseph P. Minei¹¹, Joseph Cuschieri¹¹, Paul E. Bankey¹¹, Jeffrey L. Johnson¹¹, Jason Sperry¹¹, Avery B. Nathens¹¹, Timothy R. Billiar¹¹, Michael A. West¹¹, Marc G. Jeschke¹¹, Matthew B. Klein¹¹, Richard L. Gamelli¹¹, Nicole S. Gibran¹, Bernard H. Brownstein⁸, Carol Miller-Graziano⁸, Steve E. Calvano¹², Philip H. Mason¹³, J. Perren Cobb¹³, Laurence G. Rahme¹, Stephen F. Lowry¹², Ronald V. Maier¹, Lyle L. Moldawer¹, David N. Herndon⁹, Ronald W. Davis⁸, Wenzhong Xiao⁷,²,³, Ronald G. Tompkins⁷,³, and the Inflammation and Host Response to Injury, Large Scale Collaborative Research Program⁴

¹Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94305; Departments of §Pediatrics and Medicine, §Anesthesiology and Critical Care Medicine, and §Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; ⁴Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610; ⁵Ingenuity Inc., Redwood City, CA 94063; ⁶Department of Surgery, Massachusetts General Hospital, Boston, MA 02114;
⁷Department of Surgery, Harborview Medical Center, Seattle, WA 98195; ⁸Shriners Hospitals for Children and Department of Surgery, University of Texas Medical Branch, Galveston, TX 77550-1220; ⁹Department of Surgery, University of Colorado Anschutz Medical Campus, Denver, CO 80245; ¹⁰Department of Surgery, Parkland Memorial Hospital, University of Texas Southwestern Medical Center, Dallas, TX 75390; ¹¹Department of Surgery, Harborview Medical Center.

Genomic responses in mouse models greatly mimic human inflammatory diseases

Keiko Takaoka¹,² and Tsuyoshi Miyakawa¹,²,³,¹

¹Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan;
²Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan; and ³Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan

Edited by Ruslan Medzhitov, Yale University School of Medicine, New Haven, CT, and approved June 11, 2014 (received for review January 31, 2014)

The use of mice as animal models has long been considered essential in modern biomedical research, but the role of mouse models in research was challenged by a recent report that genomic responses in mouse models poorly mimic human inflammatory diseases. Here we reevaluated the same gene expression datasets used in the previous study by focusing on genes whose expression levels were significantly changed in both humans and mice to the stimulus would generally decrease the sensitivity to detect the responses shared by the disorders and their models. For this reason, we excluded such genes from our analysis. Second, we compared each of the conditions in a single mouse study independently with the human reference conditions. Mouse studies, such as GSE7404 and GSE19661, included multiple conditions or time points. For example, GSE19661 included multiple datasets.

PNAS
‘Anything found to be true of E. coli must also be true of elephants.’

Jacques Monod & Francois Jacob,
Cold Spring Harbor Symposia, 1961
Modeling Rheumatoid Arthritis: The Human TNF Transgenic mouse

TgTNF

Human TNF transgenic mouse model of spontaneous arthritis that closely resembles the human pathology

The EMBO Journal vol. 10 no. 13 pp. 4025 – 4031, 1991

Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis

Jeanne Kaffer, Lesley Probert, Haris Cazlaris, Spiros Georgopoulos, Evangelos Kaslaris1, Dimitris Kiousis2 and George Kollias

Laboratory of Molecular Genetics, Hellenic Pasteur Institute, 127, Av. Vousofras, Athens 115 21, 1Pathology Department, Agios Sofias Children's Hospital, Athens 115 27, Greece, and 2Laboratory of Gene Structure and Expression, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA. UK

Communicated by F Livorsi

1991

lipopolysaccharide (LPS), a major inducer of inflammation, transcription from the TNF gene is augmented 3-fold while steady-state TNF mRNA levels are increased by 50-fold or more (Beutler et al., 1986). In addition, TNF production is further regulated by LPS at the translational level (Han et al., 1990). Deregulated production of TNF in humans is thought to contribute to the development of diseases such as cancer-associated cachexia (Oliff et al., 1987), endotoxic shock (Beutler et al., 1985), graft versus host disease (Piguet et al., 1987), autoimmunity (Held et al., 1990) and

TREATMENT OF RHEUMATOID ARTHRITIS WITH CHIMERIC MONOCLONAL ANTIBODIES TO TUMOR NECROSIS FACTOR α

MICHAEL J. ELLIOTT, RAVINDER N. MAINI, MARC FELDMANN, ALICE LONG-FOX, PETER CHARLES, PETER KATSIS, FIONULA M. BRENNAN, JEAN WALKER, HANNY BIJL, JOHN GHAYEB, and JAMES N. WOODY

Objective. To evaluate the safety and efficacy of a chimeric monoclonal antibody to tumor necrosis factor α (TNFα) in the treatment of patients with rheumatoid arthritis (RA).

Methods. Twenty patients with active RA were treated with 50 mg/kg of anti-TNFα in an open phase to 5 (P < 0.001) over the same period, and in the other major clinical assessments. Serum C-reactive protein levels fell from a median of 39.5 mg/liter at study entry to 8 mg/liter at week 6 (P < 0.001), and significant decreases were also seen in serum amyloid A and interleukin-6 levels.
The Tg197 and TNF^{ΔARE} MODELS OF TNF-MEDIATED DISEASE
(EMBO J. 1991; Immunity 1999)
TgA86 (tmTNFmu): a Novel Model of Spondyloarthritis

TgA86 \textsc{(Alexopoulou et al. Eur. J. Immunol 1997)}

- Overexpression of mouse tmTNF
- No severe systemic disease
- Peripheral and axial pathology
 - Spontaneous development of mild arthritis
 - Spontaneous development of spondylitis

\textbf{Arthritis}

\textbf{Spondylitis}

\begin{itemize}
 \item \textbf{Axial pathology}
 \begin{itemize}
 \item Tail bending
 \item Tail ankylosis
 \end{itemize}
 \item \textbf{Peripheral pathology}
 \begin{itemize}
 \item Arthritis
 \end{itemize}
\end{itemize}

\textbf{X-ray signs of spondylitis:}

- \textbf{Inflammation}: soft tissue swelling
- \textbf{bone erosion}: loss of small connecting bones between vertebrae
- \textbf{new bone formation}: brighter appearance of denser bones, loss of bar-bell shape and rectangular shapes of vertebrae

Karagianni et al., (unpublished)
TgTNF arthritis develops in the absence of mature T- and B-cells

Kontoyiannis et al, Immunity 2001
Tissue specificity of the CollagenVI-Cre mouse

Armaka et al., J. Exp. Med. (2008)
TNFRI on Synovial Fibroblasts is both SUFFICIENT and NECESSARY to orchestrate full TNF-driven destructive arthritis.

SUFFICIENT
Armaka et al., J. Exp. Med. (2008)

NECESSARY
Armaka et al., (unpublished)
TNFRI on IMCs is both SUFFICIENT and NECESSARY to orchestrate TNF-driven Crohn-like pathology.

SUFFICIENT
Armaka et al., J. Exp. Med. (2008)

NECESSARY
Armaka et al., (unpublished)
CHRONIC JOINT DISEASES AND COMORBIDITIES

TNF-ΔARE: A mouse model of spondyloarthropathies

Comorbidities uncovered through Infrafrontier phenotyping pipeline (collaboration with German Mouse Clinic).
A mouse ENCODE approach for arthritogenic SFs

FAIRE Seq
Pol-II
DNA methylation
H3K4Me3, H3K14Ac, H3K36Me3
H3K9Me3, H3K27Me
RNASeq
MiRNA Seq
Proteomics

Three stages of disease progression

EARLY (3w) ESTABLISHED (8w) LATE (11w)

Ccl6 locus
chr11:83,395,114-83,413,099

Increased Chromatin Accessibility in 8weeks

Increased Expression in 8weeks

Reduced DNA methylation in 8weeks

A human-mouse comparison: Gene Level

Mouse TghuTNF (RNASeq)

- 20023 genes
- 12324 significant
- 8468 orthologs

Human (Array)

- 19751 genes
- 11882 significant

Mouse: Gene expression in TghuTNF mouse synovial fibroblasts compared to healthy wild-type mice. *Kollias Lab, unpublished data*

Human: Gene expression in two pathological groups of human synovial fibroblasts (SF) from rheumatoid arthritis (RA) and osteoarthritis (OA) synovial tissues compared to normal SF from healthy individuals. *Del Rey MJ et al. Ann Rheum Dis 2012 Feb;71(2):275-80.*

Side-by-side analysis of KEGG pathway enrichments in human and mouse RASF/HSF samples reveals pathways with very similar profiles. Pearson's $r=0.38$, $p<10^{-9}$.

Genomic Responses of Mouse Synovial Fibroblasts During Tumor Necrosis Factor–Driven Arthritogenesis Greatly Mimic Those in Human Rheumatoid Arthritis

Sample definition

Specific Cell Type – (Single cells (genetic / epigenetic diversity)

Experimental Stimuli – Treatment Conditions (dynamic modeling)

Gene level

Hum genes

Mus genes

Pathway level

Hum pathways

Mus pathways

Network level

Hum Network

Mus Network

Cross-disease & comorbidities

Cross-model mechanistic focus
Plus environment & nutrition

Analysis in dynamic conditions

Human – mouse comparison pipeline

-omics

Human – mouse comparison pipeline

Hum

Mus

Pathway level

Hum pathways

Mus pathways

Network level

Hum Network

Mus Network

“ALEXANDER FLEMING”
Biomedical Sciences Research Center
Species do differ!

- Unity in Biology but also diversity and descent by modification
- Size, metabolic rates, sensory systems, stress, cognitive functions
- Life expectancy, reproductive rate, diets, microbiomes, pathogens

... but animal model research is essential

- To reproduce the cause and biology underlying complex disease
- To tweak the system with genetics and ensure safety for human
- To experiment with new treatments before they are ready for the clinic
- To understand essential biological mechanisms: the last 10 Nobel in Medicine and multiple landmark discoveries involved studies in animals.
Rethink, Resolve, Rationalize, Ruminate, Reflect

• Consider multi-layered pathways and disease heterogeneity (select your model based on target biology)

• Do not blame your animal model (blame your choice!)

• Support conclusions by evidence (not statistical magic!)

• Know your animal model (target biology, pathways, cellular mechanisms, comorbidities)

• Establish disease-specific primary/dominant causalities

• Design preclinical experiments more rigorously (avoid noise by genetic background, balance for gender and environment, and standardize induction and treatment protocols)

• Standardize design, analyses and publication of research

• Standardize statistics, interpretations and extrapolations
Animal models in the era of Precision Medicine

Towards next generation animal models that target personalized phenotypes through:

- Mouse models for **mechanistic understanding of complex diseases** and biomarker development

- "Pathogenesis Maps" aligning animal models to the different subsets of human disease

- "Mouse Avatars" (e.g. PDX) and **Humanized Mice** for personalized drug efficacy studies

- "Co-clinical trials" - real time integration of mouse and human data to guide therapeutic approaches in ongoing clinical trials

- Prompt and efficient **“human to mouse to human”** discoveries.
The National RoadMap for Research Infrastructures

Discovery
- Target identification
- Target validation
- Hit to Lead

Early development
- Lead optimization
- Preclinical

Proof of concept
- Phase 1
- Phase 2
- Phase 3

Clinical development
- Filling

Commercialization

Technology platforms and resources
- Infrafrontier-GR/Phenotypos (Animal models of human disease)
- INTEGRA-Biomed (incl. BBMRI-GR, Biobanking)
- ELIXIR-GR (Data storage)
- BioImaging-GR
- INSPIRED (Structural Biology)
- EATRIS-GR, Phase I trials
- pMedGR (Precision Medicine)
- Medical School University of Athens

Drug development pipeline

Drug development pipeline

Technology platforms and resources

- BiolImaging-GR
- ELIXIR-GR (Data storage)
- INSPIRED (Structural Biology)
- Openscreen-GR (Target based screening)
- OPEN-GR (Target based screening)
- INTEGRA-Biomed (incl. BBMRI-GR, Biobanking)
Thank you!