KLK5 and KLK7 ablation fully rescues lethality of Netherton syndrome-Like Phenotype

programmable nucleases help to reveal functional networks

Radislav Sedlacek
Czech Centre for Phenogenomics, Institute of Molecular Genetics
Czech Republic
Kallikrein-related peptidases (KLKs) in epidermis

Expressed in SC
Degradation of corneodesmosomal proteins (in vitro)
PAR-2 activation

Expressed in SC
Degradation of corneodesmosomal proteins (in vitro)
What is the role of individual kallikreins in the epidermal-kallikrein network? Cooperation, redundancy?
Generation of Klk-deficient models

Klk5 -/-

Klk7 -/-

Klk5/7 -/-
KLK5 and KLK7 single–deficient mice do not show any obvious skin phenotype

Compansatory, redundancy, cooperation effects between KLK5 and KLK7?

=> generation of Klk5/Klk7 DKO mice
Klk5 deficient mice do not show any obvious phenotype
Organization of Klk locus

Human

- ACPT
- LOC546967
- SIGLEC-9

Mouse

- 1
- 15
- 2-ps
- Siglec-l1

Klk1-related genes and pseudogenes

- KLK gene
- pseudogene
- non-KLK gene
Generation of Klk5/Klk7 dKO mice using TALEN technology
KLK-inhibitor network:
generation of Klk x Spink5 double and triple deficient mice

Spink5 -/- × KLk5 -/- → Spink5 -/-

KLk5 -/- × KLk7 -/- → Spink5 -/-

KLk5/7 -/- × KLk5 -/- → Spink5 -/-

KLk5 -/- × KLk7 -/- → Spink5 -/-

KLk5/7 -/- × KLk7 -/- → Spink5 -/-

Spink5 -/-

Klk5 -/-

Klk7 -/-

Klk5/7 -/-
Netherton syndrome

- Autosomal recessive genetic disorder
- 1 in 200,000 newborn children
- Red, scaly, exfoliating epidermis
- Chronic skin inflammation
- Growth retardation
- Specific hair shaft defects (bamboo hair)
- Caused by mutation in Spink5 gene
Generation of a mouse model for Netherton syndrome

human wt: 5´CTG TGT GCT GAG AAT GCG 3´
human 398delTG: 5´CTG TGC TGA 3´

murine wt: 5´CTG TGT GCT GAG AAT GCG 3´
murine 402delTG: 5´CTG TGC TGA 3´

Raghunath et al., 2004
Generation of a mouse model for Netherton syndrome

Abnormal differentiation of epidermis:
- Acanthosis
- Parakeratosis

Images:
- wt
- Spink5^{A135X/A135X}

TALEN mutagenesis

Lethal
Generation of Klk x Spink5 double and triple deficient mice

Spink5 -/- x Klk5 -/- x Klk7 -/- x Klk5/7 -/-
Simultaneous inactivation of KLK5 and KLK7 rescues lethal phenotype of NS mouse model

Klk5−/−

Klk7−/−

Klk5−/−Klk7−/−

day 0 day 5 day 0
Both, KLK5 and KLK7 contribute to skin barrier defects

- Unregulated activity of KLK5 causes severe postnatal dehydration at P0
- KLK7 causes damage of epidermal barrier independently of KLK5 activation
Abnormal differentiation of epidermis in Spink5-/- pups is rescued upon ablation of KLK5/KLK7

Abnormal processing of profilaggrin is associated with KLK5 activity and may contribute to impaired water retention of Spink5-/- and Spink5-/-KLK7-/- epidermis.
Epidermal barrier disruption in NS mouse model is rescued by inactivation of KLKs 5 and 7

Kasparek et al., PLOS Genetics, 2017
Unregulated activity of KLK7 causes severe epidermal barrier damage in time dependent manner

Spink5−/−
Klk5−/−

P0

P5

wt
Spink5−/− Klk5−/−
Spink5−/− Klk5−/− Klk7−/−
Unregulated activity of KLK7 causes severe epidermal barrier damage in time dependent manner.
Unregulated activity of KLK7 causes severe damage of epidermis in time dependent manner.
Bamboo hair in Spink5\(^{-/-}\)-Klk5\(^{-/-}\)-Klk7\(^{-/-}\) mice are not found after 3 weeks of age.
Adult Spink5⁻/⁻Klk5⁻/⁻Klk7⁻/⁻ mice do not show any major skin defects.
Summary

• Novel mouse model for NS was generated by mimicking the mutation from NS patients

• KLK5 and KLK7 are responsible for skin barrier disruption of Spink5\(^{-/-}\) skin

• KLK7 causes severe skin-barrier defects in the proximity of hair follicles independently of KLK5 activation

• Bamboo hair defect does not depend on KLK5 or KLK7

• KLK5 and KLK7 together are required for inflammation and differentiation of Spink5 deficient epidermis

• Only simultaneous inactivation of KLK5 and KLK7 fully rescues lethality of NS-mouse model
Acknowledgement

Laboratory of transgenic models of diseases, IMG:

Petr Kasperek
Zuzana Ileninová
Henrieta Pálešová
Olga Žbodáková
Karel Chalupský

Transgenesis and archiving module (TAM), CCP

Inken Beck
Irena Jeníčková
Veronika Libová
Sandra Potyšová
Irena Placerová
Jana Ježková
Jana Kopkanová
Monika Volčková
Dana Kopperová

Institute of Microbiology

Oldřich Benada
Olga Kofronova

Histopathology Unit, CCP

Ivan Kanchev
Marketa Pickova
Attila Juhasz
Peter Makovicky

University of Umea:

Maria Brattsand